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Combined effects of diffusion and reaction 
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particles 
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An established implicit finite difference method was extended to predict the behaviour of particles 
when both diffusion and interface reaction effect the kinetics of growth or dissolution. 
A quasi-steadystate model was also obtained. Mixed behaviour must be expected for a relatively 
large range of conditions, 0.01 < aok / D < 1 0, where k is a kinetic constant, ao is the initial radius, 
and D is diffusivity. Evolution from initial mixed control to strictly diffusion controlled growth 
is possible for moderate aok/D, but only when the particle size becomes much larger than the 
initial size. 

1. I n t r o d u c t i o n  
The observed growth or dissolution of particles and 
drops is often consistent with assuming control by 
diffusion in the surrounding matrix, with equilibrium 
at the interface. However, the effect of interfaeial en- 
ergy on the concentration of the solute at the inter- 
face of very small particles, predicted by the Gibbs-  
Thomson law, leads to unreasonable conditions in the 
matrix because the classic formulation of equilibrium 
conditions can permit the volume fraction of the sol- 
ute to exceed unity. This failure can result from one or 
more of the following constraints: 

1. Regular solution behaviour is assumed in deriv- 
ing equilibrium conditions at the interface, but this 
must fail at high solute concentration. 

2. If rates of transport become very high the process 
may become controlled by surface reaction kinetics or 
a mixture of diffusion and interface kinetics. 

3. Pressure gradients causing viscous relaxation in- 
crease as particles become very small and may require 
consideration of stress relaxation. 

Although it is often reasonable to assume that the 
slowest of several competing processes will entirely 
control the behaviour of a system, this is not always 
true and there may be a significant intermediate re- 
gime with mixed control. This paper considers such 
a case, where the growth or dissolution of a drop or 
particle may involve interface reaction kinetics as well 
as diffusion in the matrix. 

2. M a t h e m a t i c a l  f o r m u l a t i o n  
An isolated spherical particle is considered in an ex- 
tensive uniform body of matrix and spherical sym- 
metry is maintained. In such conditions diffusion in 

the matrix is described by [-1, 2] 

D ~ r  2 + - ~(a/r)  2 (1) 

where C is the concentration, r is the radial distance, 
a the radius of the particle, t time, D diffusivity, 

= 1 - VAC~ in which Va is the partial molar vol- 
ume of the solute in the matrix and Cs is the molar 
concentration of material in the sphere of pure solute. 
Diffusivity and partial molar volumes are taken to be 
constant. Transport  through the medium must then 
correspond to change in the size of particle according 
to 

do o <) 
d-~ = C~[-1 - (1 - ~)C(a, t)/Cj1 -~r . (2) 

The initial conditions correspond to 

C(r, O) = Coo, r > a  (3) 

and 

c ( ~ ,  t) = coo.  (4) 

The equilibrium concentration at the interface, assum- 
ing regular behaviour, will be given by the well known 
Gibbs-Thomson law 

Ceq(a ) = C * e x p [ 2 c r / ( a R T C ~ ) ]  (5) 

where C* is the equilibrium concentration for a flat 
interface, ~ is the interfacial energy, R is the perfect gas 
constant and T is the absolute temperature (K). 

If reaction at the interface affects the process, the 
concentration C(a, t) will not be its equilibrium value 
Ceq(a ) and, for a first-order reaction, the rate of trans- 
fer of material across the interface will be given by 

C~(da/d t )  = k[-C(a, t) - Coq(a)] (6) 
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2.1. Dimensionless treatment 
For the sake of simplicity in manipulating the equa- 
tions the following dimensionless variables are used 

x = r/a s = cy/ (aoRTCs)  

R = a/ao k* = kao /D  (7) 

z = t D / a  2 F ( x , z )  = ( C - C o ~ ) / C s  

Thus Equations 1, 2 and 6 become 

02F [ 2 dRq aF 0F 
0 x 2 + ~ _ 2 / x + R ( x - - ~ / x  )-~-zJ~xx = R 2 ~ z  (8) 

d R _  1 (OF)  

dR R { 1 - ( 1  8)[F(1, z )+dO+qbq]}  ~xx t 

(9) 

d R / d z  = k*['F(1, z) + dO + dOq - dOqexp(2s/R)] (10) 

with 

dO = (C~o - C * ) / C ,  (11) 

q = C*/(Coo - C*)  (12) 

The parameter q is a solubility to oversaturation ratio. 
The following initial and boundary conditions 

apply 

F(x ,O)  = 0, x >  1 (13) 

F ( ~ , z )  = 0, z > 0  (14) 

2.2. Finite difference technique 
Equations 8, 9 and 10 must be solved numerically. 
Reliable implicit finite difference solutions can be ob- 
tained with variable space mesh and time mesh sizes, 
as shown elsewhere [2, 3]. Those solutions become 
more complex whenever variable boundary condi- 
tions are involved, as happens for multi-component 
gas bubbles [4, 5], and whenever surface tension or 
interracial energy becomes important [61. Variable 
boundary conditions also arise when both diffusion 
and interface kinetics are considered. A finite differ- 
ence method was also used by Szekely and Fang [7] 
to deal with non-equilibrium effects. However, the 
stability of this technique requires very small time 
intervals; which is efficient for very large dO, but might 
prevent efficient use for all the relevant ranges. 

Special algorithms are needed in most situations 
where variable boundary conditions occur. Otherwise 
numerical procedures tend to become unstable and 
fail. Crank and Nicholson [81 showed how to deal 
with a combination of diffusion and interface kinetics 
by taking into account that interface kinetics give rise 
to a linear relation between the interface concentra- 
tion gradient and the interface concentration. This is 
strictly true when the equilibrium concentration is 
a constant, but is not true when interracial energy 
influences the equilibrium condition, Equation 5. 
However, as finite difference solutions are computed 
by adding small increments in time, these can be 

F(1, z) 

controlled to give small relative changes in radius and 
interface concentration per time step, so that the inter- 
face concentration can be transformed into a quasi- 
linear function of interface concentration as is shown 
in Appendix A. 

Quasi-stationary approximations were used to ob- 
tain the initial concentration profile after a short in- 
itial time, Zo, when the dimensionless radius becomes 
Ro = I + ~ R .  

2.3. Reaction control 
When k* becomes sufficiently small the behaviour of 
the particle becomes controlled by rate of reaction at 
the interface and, as concentration gradients vanish, 
F(1, z) ~ 0. Then from Equation 10 

d R / d z  = k*[qb + dOq - dOqexp(2s/R)l  (15) 

When the effects of interfacial energy are small enough 
to be neglected this reduces to a linear dependence of 
radius on time 

R = 1 + k*dOz (16) 

When interracial effects must be taken into account, 
but 2 s / R  < 1, e x p ( 2 s / R )  ~ 1 + 2 s / R  and Equation 15 
can be integrated to give 

R - 1 + 2 s q l n E ( R  - 2sq) / (1  - 2sq)l = dOk*z (17) 

However, the condition 2 s i R  < 1 must fail, at least 
when a particle approaches complete dissolution. 
Growth requires dO > 0 and 2 s / R  < ln(1 + I /q).  Thus 
if q >> 1 the term 2 s i R  must be small, which validates 
Equation 17. However, as q tends to zero this 
approximation fails when the particle size is the 
order of magnitude of the critical size, ac--c~/ 
[ R T C s l n ( 1  + i/q)], and Equation 15 must be solved 
numerically. Otherwise, the effect of interfacial energy 
can be ignored. 

2.4. Quasi-steadystate solutions 
A quasi-steadystate regime assumes that the time 
derivative remains negligible, and slow boundary 
motion [6]. This only occurs for very slow changes in 
size and corresponds to 

Q2F 2 OF 
ON 2 + 0 (18) x a x  

On integration this leads to 

(OF/Qx)I  .~ - F(1, z) (19) 

and on combining with Equations 9 and 10 

- F(1, z) = k 'R{1 - (1 - ~)[F(1, z) + dO + dOq]} 

x [F(1, z)  + d o + doq - doqexp(2s /R)]  

(20) 

A quasi-steadystate regime requires very small 
driving forces, IF(1, z)l < 1, and this yields an explicit 
relation between the driving force, F(1, z), and particle 
size, R 

-- dok*R[1 -- (1 -- ~)(dO + dOq)l [1 + q -- q e x p ( 2 s / R ) l  
(21) 

1 + k ' R [ 1  - (1 - e)(do + doq)3 
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Thus, after specifying s, q, qb, e and k*, F(1, z) depends 
only on R. On  combining with Equat ions 9 and 19 
when IF(I ,  z)l < 1 

dR  qbk*[1 + q - q e x p ( 2 s / R ) ]  
- -  ~ ( 2 2 )  
dz 1 + K*R[1 - (1 - ~)(d~ + qbq)] 

which must  be solved numerically. However,  2 s / R  is 
often small, and in this case e x p ( 2 s / R )  ,~ 1 + 2 s / R ,  

and Equat ion  22 can be integrated; this yields 

?pz = { R  -- 1 + 2 s q l n [ ( R  - 2sq) / (1  - 2 s q ) ] } / k *  

+ [1 --(1 -- e)(qb + qbq)] {(R 2 - 1)/2 + 2sq ( R -  1) 

+ ( 2 s q ) Z l n [ ( R  - 2sq) / (1  - 2sq)]}  (23) 

and the solution for diffusion controlled behaviour  
reduces to 

zqb* ..~ (R z - 1)/2 + 2 s q ( R  - 1) + (2sq) z 

x ln [ (R  - 2sq) / (1  -- 2sq)]  (24) 

where 

qb* = qb/[1 - (1 - a)(qb + ~)q)] (25) 

The parameter  q is relevant to the analysis of either 
strictly diffusion controlled behaviour  or  mixed con- 
trol. However,  the effects of interfacial energy on the 
solutions for reaction control  (Equat ion 17) or dif- 
fusion control  (Equat ion 24) can be accounted for by 
a single parameter  (sq), rather than separate values for 
q and s .  

For  moderate  values of k* = aok/D,  Equat ion  22 
shows that  particle growth may  evolve from mixed 
control  towards  strictly diffusion controlled behavi- 
our  as the particle grows. However,  this might  require 
increase in size by a factor of 10 or more, (Fig. 1), 
which is often difficult to achieve experimentally. For  
example, both  solutions for reaction controlled and 
diffusion controlled particle coarsening [9-11]  might 
fail because experimental size ranges often involve an 
increase in size by a factor of only about  2. Models for 
mixed control  [12] are then needed. 
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Figure 1 Quasi-steadystate predictions of growth rates for (1) reac- 
tion control, (2) mixed control and (3) diffusion controlled behav- 
iour, when do=0.01, q=5,  ~=0, s=0.05 and k*=0.1. The 
dashed line represents the non-steadystate finite difference solution. 

Separate stages might  also be assumed for reaction 
control,  mixed control,  and diffusion controlled beha- 
viour when k* �9 = aok /D is very small; however, this 
is even less likely to be observed experimentally than 
the transit ion from mixed control  to diffusion con- 
trolled behaviour.  

3 .  R e s u l t s  
Figs 2 and 3 show the influence of interface reaction 
rate on growth and dissolution of spherical particles. 
Fig. 2 shows the predicted times to shrink to one-tenth 
of the initial radius, that  is dissolution of 99.9% of the 
solute mass. It can be seen that  assumption of control  
entirely by interracial reaction is nearly true for 
k* < 0.01, and the differences in behaviour  between 
mixed control  and reaction control  increase rapidly as 
k* increases above 0.1. The behaviour  becomes sens- 
itive to the specific value of solubility, qb, for k* > 0.1. 
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Figure 2 Dimensionless times required to shrink to 10% the initial 
size (R = 0.1) for s = 0.1, a = 0, q = - 1 and do = - 0.001, - 0.1 
and - 0.5. The quasi-steadystate solutions for: ( - - - )  negligible Idol; 
and (- .-)  reaction controlled behaviour. 
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Figure 3 Dimensionless times required to double the size (R = 2) 
for s = 0.1, e = 0, q = 4 and d o = 0.001, 0.1 and 0.2.' 
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Fig. 2 includes quasi-steadystate solutions (Equation 
22) which should apply for low solubility and the 
reaction controlled limit. The full numerical solution 
for ff = 0.001 is sufficiently close to the quasi- 
steadystate solution to validate the numerical proced- 
ures used and indicate that the quasi-steadystate re- 
sult should only be used for values of l qbl not exceeding 
0.01. Table I also gives the actual dimensionless times 
for shrinkage to R = 0.1, and it may be seen that 
k* > 100 is needed for the exact value of reaction rate 
to have only a trivial effect on rate of dissolution; the 
data in the table show that the transition to diffusion 
control is slightly dependent on the value of 4. To find 
that the range of values, within which mixed control 
needs to be considered, extends to at least three orders 
of magnitude is unexpected. 

Fig. 3 shows times to double in size plotted in  the 
same way, and again shows that k* < 0.01 is needed 
for the role of diffusion to be neglected. Quasi-steady- 
state solutions are indistinguishable from finite dif- 
ference predictions for qb = 0.001. Table I I  shows 
that the value of k* above which simple diffusion 
control can be assumed is definitely dependent on the 
value ofd~; for ~b = 0.001 one sees that k* = 100 is 
sufficient, but for qb = 0.2 the limit lies above 
k* = 10 4. 

Fig. 4 illustrates how the actual growth of a sphere 
would be influenced by interface kinetics in a slightly 

T A B L E  I Finite difference (fd) and quasi-steady state (qss) 
predictions for time Z0A required to shrink to 10% of the initial 
size (R = 0.1), when e = 0, s = 0.1, q = - 1  and 

- qb = 0.001, 0.1 and 0.5 

k* Ir 

d~ = -0 .001 r = --0.1 dp = - 0 . 5  

Fd Qss Fd Qss Fd Qss 

10 -3 571.000 570.000 569.000 571.000 570.0000 571.0000 
10- 2 57.400 57.400 57.200 57.400 57.2000 57.4000 
0.1 6.010 6.060 6.020 6.050 5.9800 6.0400 
1 0.912 0.922 0.848 0.903 0.7740 0.8400 
10 0.395 0.408 0.292 0.367 0.1760 0.2260 
102 0.341 0.357 0.227 0.309 0.0848 0.1268 
10 a 0.336 0.352 0.220 0.303 0.0696 0.1111 
104 0.336 0.351 0.220 0.302 0.0676 0.1091 

T A B L E  I I  Finite difference predictions for time, z2, required to 
double the particle size (R = 0.1), when e = 0, s = 0.1, 
q = 4anddp = 0.1301,0.01,0.1and0.2 

k* ~Z 2 

r = 0.001 r = 0.01 r = 0.1 dp = 0.2 

10 - s  2903.00 2903.00 2900.000 2912.00000 
10 - z 294.00 294.00 292.000 291.000 00 
0.1 32.90 32.60 30.600 29.100 00 
1 6.74 6.34 4.340 2.920 00 
10 4.10 3.66 1.553 0.298 00 
102 3.84 3.38 1.253 0.033 90 
103 3.81 3.36 1.223 0.007 07 
104 3.81 3.35 1.220 0.004 32 
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supersaturated solution. Here the behaviour is indis- 
tinguishable from that for pure diffusion controlled 
growth for k* > 103. Smaller values of k* cause an 
initial delay in establishing detectable growth, al- 
though in all cases the growth eventually achieves the 
linear relation between size and square root of time 
characteristic of diffusion control [3]. The asymptotic 
solution for growth from zero [1] is nearly indistin- 
guishable from the solution for k* = 103, for sizes 
larger than about 10 times the initial size. The appar- 
ent induction time can be very prolonged for suffi- 
ciently small values of k*, when reaction controlled 
behaviour may be assumed at short times. 

Fig. 5 shows another example of the effect of vary- 
ing reaction rate constant, 0.01 < k* < 1, in two sets 
of conditions for both of which s lql = 0.1. These 
computed results are plotted in the form indicated by 
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Figure 4 Mixed controlled behaviour for ~ = 0.01, q = 49, e = 0, 
s = 0.01 and k* = 10 -3, 10-2,0.1, 1 and 103. When k* = 103 growth 
from finite initial size becomes undistinguished from the asymptotic 
solution describing diffusion controlled growth from zero I-1]. 
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Figure 5 Departure from reaction controlled growth for d~ = 0.2, 
q = 0.1 and ~ = 0.5. The values of k* and s are shown in the figure. 
The dashed line represents reaction control (Equation 17). 



Equation 17, which is shown dashed. Although it is 
a good approximation for k* = 0.01 and s = 0.1, 
it is seriously in error for s = 1 even for the lowest 
value of k*. This confirms that the condition siR ~ 1 
must be met for Equation 17 to be valid, and in that 
case the solution of the partial differential equations 
becomes indistinguishable from the reaction con- 
trolled behaviour. 

Fig. 6 shows some predictions for dissolution plot- 
ted in the same way as in the previous figure. For  
k* ~< 0.1 the solutions are almost the same as for the 
reaction controlled case given by Equation 17, be- 
cause of the condition s = 0.01. However, for 
s = 0.1, see Fig. 7, deviations are significant even for 
very small k*; although the curve for k* = 0.001 
represents the limit for reaction control. Note that 
decrease in size enhances s/R, and this causes failure of 
the condition' 2siR ~ 1. 

Fig. 8 shows the role of interface kinetics during 
dissolution, even for k* > 10. One of the major weak- 
ness of the classic diffusion controlled formulation is 
that increase in concentration at the interface is un- 
bounded, which can make the volume fraction of 
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Figure 6 Departure from reaction controlled dissolution for 
= - 0.1, q = -- 10, ~ = 0.5, s = 0.01 and k* = 0.01, 0.1 and 1. 
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Figure 7 Departure from reaction controlled dissolution for 
= -- 0.1, q = - 2, e = 0.5, s = 0.1 andk*  = 0.001,0.1 and 1. The 

dashed line represents reaction control (Equation 17). 
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Figure8 Departure from diffusion controlled dissolution for 
qb= - 0 . 1 ,  q =  - 2 ,  c = 0 . 5 ,  s = 0 . 1  a n d k * = l ,  2 , 5 , 1 0 a n d  100. 
Diffusion controlled behaviour is shown dashed. 

solute in the solution exceed unity. As this is impos- 
sible, that model must fail at some particular size. This 
occurs at about R = 0.05 in this example. Phys- 
ically, interface reaction kinetics is one mechanism 
which could prevent this happening; alternatively, 
flow under stress relaxation might become the limiting 
process which would prevent this. 

4. Conclusions 
Quasi-steadystate models and a finite difference tech- 
nique were developed for particle growth or dissolu- 
tion when the behaviour is mix controlled by interface 
reaction and solute diffusion in the surrounding 
matrix. 

Interface reaction cannot be ignored for a signi- 
ficant range of conditions when 0.01 < aok/D < 10. 
This effect can become very important after shrinkage 
to very small sizes, especially if the solute volume 
fraction is large. On the contrary, the role of interface 
reaction decreases with increase in size. However, the 
transition from mixed control to diffusion controlled 
behaviour only occurs when the particle becomes 
much larger than the initial size. 
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Appendix 1. Finite difference solutions 
The basis for the finite difference solutions is a matrix 
of discrete values of concentrations F~, ,, correspond- 
ing to radial positions xl  = 1, x2, x3 . . . . .  x j -1 ,  xj, 
x j + l , . . . , x ,  and times t l  =O,  t2, t 3 , . . . , & - l ,  
&, &+ 1 . . . .  ; this reduces to an implicit scheme which 
assumes the form of linear equations (Equations A1, 
A2 and A3) in which F j - l , k + l ,  Fj , ,+I  and 
F j+ 1, k+ 1 become the dependent variables. Details are 
given elsewhere (Frade [2], Cable and Frade [3]). 

~2, 1 F 1 , k + t  4- ~3, t F 2 ,  k+a 

O~l,j- l f j -  l,k+ l. Jr- O~2, j_ l lgj, k+ l -~ O~3, j - l  Fj+ l,k+ 1 

O~l,n-lFn-2, k+l 4- O~2,1Fn-l,k+l 

Quasi-stationary approximations are assumed to ob- 
tain the required initial conditions. 

Equations A1 and A3 are easily obtained for cases 
when the boundary concentrations remain constant. 
On the contrary, special algorithms are usually needed 
for time dependent boundary conditions in order to 
avoid instabilities of the numerical method. 

[Fl,k+ 1 + ~ + t O q - - ~ q e x p ( 2 S / R k + t ) ]  

(AIO) 

and by controlling time increments the change in 
concentration can be kept small, that is 
[ (F l , k+  1 - -  Ft ,  k) /Fl ,k[  < 0.01. Therefore, ( F l , k + l )  2 

2 F l , k + l F l , k  -- (Fx,k) 2, and Equation A10 can be 
replaced by Equation A6 where 

gk+l = k*Rk+t{d?[ l  + q - - q e x p ( 2 S / R k + t ) ]  

x [1 --(1 - 0(qb + qbq)] + (1 - -  ~ ) ( F I , k )  2 } 

(All)  

hk+l = k * R k + t [ 1 - - 2 ( 1 - - ~ ) ( F l . k  + ~ + d o q - - q )  

+ (1 -- e)doqexp(2s/R,+ 1)] (A12) 

The space derivative is readily computed from 
a known profile at time step Zk + 1. This may be done 

A1.1.  B o u n d a r y  c o n d i t i o n s  
On adding an additional fictive point at Xo = 1 6x, 
with 5x = (x2 - x l )  and concentration Fo, k+l, the 
radial derivatives become 

(~F/t~X)l, k+ 1 = (F2,  k+ 1 - -  Fo,k+ 1 ) / ( 2 6 X )  (A4) 

(~2F/~x2)1,k+1 = (F2 ,  k + l - - 2 F l , k + l  4- Fo, k+I)/(~X) 2 

(a5) 

and, on assuming a linear relation between the first 
derivative and concentration 

(t~F/t~X)l,k+l = gk+l 4- hk+lFl , k+l .  (A6) 

Equations A l l  and A12 are used to compute the 
relevant coefficients gk+l and hk+l. On combining 
Equations A4 and A6, F o ,  k+ 1 c a n  be expressed as 
a linear function of both F1, g+ 1 and F2, k+ t. A similar 
solution can be assumed for time step Zk, and taking 
the space derivative as the average for time steps 
Zk and Zk+ 1. Equation A1 takes the discrete form 

F 2 ,  k+ 1 - -  [1 4- hk+lSx(1  -- ~ x )  -- ~ ] F l , k +  1 

= (gk + gk+l)6X(  1 -- XSX) + (1 -- ~)Fl .k  -- F2, k 

(A7) 
where 

X = 

~ =  
1 + (Rk+l + Rk)(1 -- e ) (dR /dz ) /4  (A8) 

(2/3)[Rk z + RkRk+l  + (Rk+I)2](SX)2/  

X (Zk+ 1 -- Zk) (A9) 

On combining Equations 9 and 10 one also obtains 

( t~F/6X)l ,k+l = k * n k + l [ 1  - - (1  - -  e ) (F1 ,  k+ 1 + qb + qbq)]  
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= ~4, 1 (A1)  

= a4, j -1 ,  j = 2,3 . . . . .  n - - 1  (A2) 

= ~4,,-2 (A3) 

by Equation A10, which gives a value (OF/~X)A; how- 
ever the effect of interface kinetics vanishes for very 
large k* and the following value may be computed for 
the concentration gradient 

(QF/Ox)8 ~ (F2, k+I -- Fa,k+I)/(X2 -- Xa) (A13) 

For  the general case a compromise is achieved by 
equating 

(OF/Ox)a,k+l = [( tF/OX)A + k*(~F/OX)B]/(k* + 1) 

(A14) 

A1.2.  In i t i a l  c o n d i t i o n s  

The initial concentration profile was based on the 
quasi-stationary approximation [13] 

F(x ,  Zo) = F ( 1 , z o ) x - l  er fc[ (x  - 1)/(2zl/2)] 

(A15) 

where Zo corresponds to very small change in radius, 
that is [R - 1 [ < 0.005. A quasi-stationary solution is 
also used for the rate of change in size, as proposed by 
Epstein and Plesset [14] 

d R / d z  = - F(1 ,Zo)[1/R + 1/(~z)  1/2] (A16) 

For  small change in radius [fiR[ ~ 1, and assuming 
that F(1, z) remains almost unchanged, Equation A16 
yields 

Ro - 1 - 2F(1,Zo)[Zo/(1 + Ro) + (Zo/~) 1/2] 

(A17) 

In addition, if F(1, z) ~ F(1, Zo) and Ro ~ 1, Equation 
10 gives 

d R / d z  ~ (Ro - 1)/zo 

,~ k*{F(1,Zo)  + ~) + ~ q  - d~q 

xexp[4s/(1 + Ro)]} (A18) 

Equations A17 and A18 were thus used to obtain the 
starting values of zo and F(1, zo) for 5R = 0.01. 


